
CEWES MSRC/PET TR/98-23

Integrating Web, Desktop, Enterprise and Military
Simulation Technologies To Enable World-Wide Scalable

Televirtual (TVR) Environments

by

G. C. Fox
W. Furmanski
B. Natarajan

H. T. Ozdemir
Z. Odcikin Ozdemir

S, Pallickara
T. Pulikal

04h01698

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

Integrating Web, Desktop, Enterprise and Military Simulation
Technologies To Enable World-Wide Scalable Televirtual (TVR)

Environments.

G.C. Fox, W. Furmanski, B. Natarajan, H. T. Ozdemir,

Z. Odcikin Ozdemir, S. Pallickara and T. Pulikal

Northeast Parallel Architectures Center(NPAC) at Syracuse University

fgfc, furm, balaji, timucin, zeynep, shrideep, tapulikag@npac.syr.edu

February 27, 1998

Abstract

We present an approach to the next generation
televirtual (TVR) environments that integrate collabo-
ration with distributed computing and modern modeling
and simulation technologies. We follow the 3-tier archi-
tecture with the Web Object (Java/CORBA) based mid-
dleware, VRML/Java3D/DirectX based front-ends and
JDBC/PSS/OLEDB based back-ends and we are test-
ing our design and the integration concepts by proto-
typing a multi-user authoring and runtime environment
to support WebHLA based distributed military simula-
tions. We present �rst our taxonomy of collaboratory
frameworks and our integration paradigm, based on the
WebFlow system at NPAC. We then list the critical en-
abling technologies that are being integrated and �nally
we summarize the current status of our prototyping ex-
periments.

1. Introduction

Support for collaboration was one of the main
driving forces for the original Web, created by CERN
physicists to share data across high energy physics labs.
Over the last decade, the Web technologies rapidly
evolved and so did the collaboration capabilities of the
whole framework. Natural initial focus was on asyn-
chronous collaboratory models (shared databases) which
were more recently augmented by the synchronous com-
ponents (shared displays) and are now further evolving
towards the ultimate televirtual (TVR) (shared worlds)
environments. Some essential Web technology thresh-
olds towards TVR included: VRML for 3D interactive
front-ends and Java that enabled real-time synchronous
connections.

First generation systems were represented by cus-
tom Java based collaboratory server technologies such

as NCSA Habanero or JavaSoft JSDA. The recent on-
set of distributed object and/or component technologies
opens new interesting avenues for the standards based
collaboratory infrastructure. However, selecting a spe-
ci�c direction in the exploding �eld of distributed ob-
ject and component technologies is not an easy task.
CORBA o�ers one promising approach, especially from
the large scale computing perspective but there are al-
ternatives such as Java RMI or Microsoft DCOM. Fi-
nally, the World-Wide Web Consortium is developing
a set of new standards such as XML, DOM, RDF and
HTTP-NG which, when combined, can be viewed as yet
another, new emergent distributed object model (some-
times referred as WOM [1]) which is likely easier to be
adopted by simple to medium complex distributed ob-
ject/component applications.

Recent OMG/DARPA workshop on compositional
software architectures [1] illustrated very well both the
growing momentum and the multitude of options and
the uncertainty of the overall direction in the �eld. A
closer inspection of the distributed object/component
standard candidates indicates that, while each of the
approaches claims to o�er the complete solution, each
of them in fact excels only in speci�c selected aspects of
the required master framework. Indeed, it seems that
WOM is the easiest, DCOM the fastest, pure Java the
most elegant and CORBA the most complete solution.

In our approach towards TVR, we adopt the inte-
grative methodology i.e. we setup a multiple-standards
based framework in which the best assets of various ap-
proaches cumulate and cooperate rather than compete.
We start the design from the middleware which o�ers a
core or a 'bus' of modern 3-tier systems and we adopt
Java as the most e�cient implementation language for
the complex control required by the multi-server middle-

1

ware. We adopt CORBA as the base distributed object
model at the Intranet level, and the (evolving) Web as
the world-wide distributed (object) model. System scal-
ability requires fuzzy, transparent boundaries between
Intranet and Internet domains which therefore trans-
lates into the request of integrating the CORBA and
Web technologies. We implement it by building a Java
server which handles multiple network prototocols and
includes support both for HTTP and IIOP. On top of
such Object Web software bus, we implement speci�c
computational and collaboratory services.

2. Taxonomy Of Collaboratory
Frameworks

The most straightforward is an asynchronous col-
laboratory framework, typically o�ered by Web linked
relational databases. Participants interact in such a
shared space at their own pace, using some suitable
connection identi�ers to maintain the session identity
across subsequent client-server connections. The atom-
icity, concurrency, security and other transactional capa-
bilities of the database ensures consistency of the shared
space. Our two projects, one in healthcare domain
(Careweb) and another one in distance education (Lan-
guage Connect University - LCU) used this type of col-
laboratory system based on CGI-extended web servers
with tools for creating and editing shared documents in
the database. In Careweb, we used a centralized Ora-
cle database of student health records to bring various
members of the school health community (school nurses,
nurse practioners, pediatricians, parents etc.) together.
LCU also used CGI-based approach for bringing a vir-
tual classroom of students and instructors together over
the web. It used a hypermedia database where students
can take lessons, quizzes, exams etc. and instructors
can grade these submissions and respond back to the
students in various di�erent ways. Support was also
there for a Web/Oracle based customized mailing facil-
ity wherein various members of the virtual university
can interact with others in a group or on a individual
basis.

The onset of Java and ActiveX brought full
dynamic/remote programmability to the client/Web
browser side and hence the support for the socket based
active connections between clients and collaboratory
servers. This enabled real-time synchronous collabo-
ratories, typically implemented as a collection of Java
applets, maintaining active connections to the com-
mon server-side shared/collaboratory object and updat-
ing their displays within some synchronous communica-
tion model such as chat, whiteboard, webcast etc. The
current �rst generation of such systems o�ers various
API solutions, ranging from simple generic collaboratory

Channel model of JSDA by JavaSoft, to the full collabo-
ratory applet (hablet) model of Habanero by NCSA. In
our collaboratory experiments, we explored both JSDA
and Habanero models from the perspective of their rel-
evance for TVR collaboratory environments.

Televirtual (TVR) frameworks are based on the
shared virtual world metaphor, popular in the networked
virtual reality community. Hence, TVR can be viewed
as a natural merger of asynchronous and synchronous
collaboratory technologies discussed above. Partici-
pants get engaged in synchronous collaboration within
their individual 'reality windows' whereas the rest of
their worlds follows the asynchronous update and ac-
cess model. Naively, one could implement TVR simply
as a central server based synchronous collaboratory with
clipping but such solution clearly does not scale towards
truly large multi-user worlds. A natural scalable solu-
tion is given by a peer-to-peer or a multi-server model
in which each participant joins the world with her/his
own 'personal' server. Distributing an active multi-user
virtual world over a set of servers raises in turn sev-
eral non-trivial synchronization issues. Such parallel or
distributed simulation environments were actively inves-
tigated during the last decade by the DoD. A set of
promising solutions and standards is now available, in-
cluding DIS, SPEEDES and most recently HLA/RTI.
These systems o�er sophisticated algorithms for manag-
ing logical simulation time and handling the distributed
synchronization such as dead reckoning in DIS, Global
Virtual Time or Breathing Time Warp in SPEEDES,
and Data Distribution Management in HLA/RTI.

3. Towards Non-Trivial Collabora-
tory Applications

Simple Web based collaboratory applications are
already being used by speci�c comunities such as on-
line gaming, chat rooms, or distance learning. Here, we
are trying to address a more complex question of what
comprises a useful collaboratory application for an en-
terprise or a research lab. Such institutions often use
computers to address and solve some complex problems
in their domain. Hence, for collaboration to succeed,
it needs to be made part of the mainstream computa-
tional framework used by an organization, rather then a
standalone or add-on capability, which is typical to the
current generation systems.

Such integration of collaboration and computation
can be most naturally addressed within the current mod-
els of distributed objects such as CORBA, Java RMI or
DCOM. Indeed, a shared entitity such as a CORBA ob-
ject can act as a natural collaboratory channel, while at
the same time it can be associated with some server side

2

processing or it can interact with other computational
CORBA objects. One example of such approach is given
by the WebFlow [2][3] environment under development
at NPAC.

WebFlow is a 3-tier distributed visual data
ow
model. WebFlow front-end is given by a Java applet
that o�ers a visual interactive tool for data
ow au-
thoring. WebFlow middleware is given by a mesh of
Java Web Servers that o�er servlets based manage-
ment of the distributed computation: Session Man-
ager that interacts with the editor applet, Module Ma-
manger that instantiates computational modules repre-
sented as visual data
ow nodes, and Connection Man-
ager that communicates with other WebFlow servers
to form distributed computational meshes of WebFlow
modules. WebFlow Module is a Java Object which
implements web
ow.Module interface with three meth-
ods: init(), run() destroy(). WebFlow backend is cur-
rently left open for experimentation with various com-
putational (e.g. HPF, RDBMS) and collaboratory (e.g.
JSDA) paradigms. This allows us to put computational
and collaboratory components of a complex computa-
tional environments into the common framework of vi-
sual data
ow authoring. Some natural collaboratory ap-
plications under development within this model include:
collaboratory visual software engineering (collaboratory
UML front-ends); simulation based design (collabora-
tory VRML authoring), visual HLA simulation tools
(collaborative authoring of federations or federate ob-
jects for wargaming simulations).

4. Enabling Technologies

We follow the 3-tier architecture with the dis-
tributed object/componentware based middleware, vi-
sual front-ends and suitable simulation, computation or
information/database objects in the back-ends.

In the front-end, the most promising collaboratory
technologies include: Java3D, VRML, DirectX, XML.
Is seems that Java3D and VRML communities will join
their e�orts, but it isn't clear yet how these technolo-
gies are to be integrated with the Microsoft approach
based on XML application languages on top of DirectX
engines.

Virtual Reality Modeling Language (VRML) is a
�le format that de�nes the layout and content of a 3D
world with links to more information. The Java 3D API
is an application programming interface used for writing
stand-alone three-dimensional graphics applications or
Web-based 3D applets. DirectX is a group of technolo-
gies designed byMicrosoft to makeWindows-based com-
puters an ideal platform for running and displaying ap-
plications rich in multimedia elements such as full-color

graphics, video, 3D animation, and surround sound.

In the middleware, we are exploring CORBA,
Java/RMI and DCOM and we are addressing their in-
tegration towards a uniform Object Web software bus.
We are also augmenting this generic layer of distributed
objects and components by specialized DoD technolo-
gies such as SPEEDES, DIS and HLA/RTI in the dis-
tributed simulation domain. These techologies are being
discussed in the following sections in details.

In the back-end, we are analyzing simulation ob-
ject technologies such as HLA/FOM or HLS/SOM, the
generic CORBAservices and CORBAfacilities, and the
transparent persistence technologies such as Java JDBC,
CORBA PSS or Microsoft OLEDB which are still evolv-
ing but essential for building large and heterogeneous
and yet scalable worlds.

JDBC API from JavaSoft, is a standard SQL
database access interface for accessing heterogeneous
databases from Java programs. It encapsulates the var-
ious DBMS vendor proprietary protocols and database
operations and enables applications to use a single high
level API for homogeneous data access. With the inte-
gration of Java and databases, many visually challeng-
ing, collaborative applications can be developed with
ease.

One of OMG's Corba Object Services, Persistent
State Service (PSS), addresses the issues of making per-
sistent CORBA objects across machines, platforms and
datastores. PSS provides the platform for storing and
managing distributed business objects over heteroge-
neous datastores in a reliable and scalable manner for
general and common shared use. PSS makes use of other
CORBA services like Transaction Service and features
like portable object adapter, objects-by-value etc. to
give a location transparent, language and datastore -
independent access to the objects.

OLEDB, which is the core of Microsoft's Univer-
sal Data Access strategy, de�nes a set of COM interfaces
by which data providers, consumers and service compo-
nents can interact with ease, for developing multitier
enterprise applications. Applications or service compo-
nents like query processor, cursor engine etc. can access
the underlying diverse data in a unique way. The Ac-
tiveX Data Objects built on top of OLEDB gives a lan-
guage and data provider -neutral, extensible and easy
to use way for manipulating the data.Thus applications
can use the same interface to access various heteroge-
neous datastores like mail stores, project management
tools, ODBC databases etc. While OLEDB addresses
persistency of COM objects and PSS that of CORBA
objects, we are trying to integrate these two technolo-

3

gies to develop a location, language, operating system
and datastore -independent, transparent way of persis-
tent object storage.

5. Technology Integration: A Case
Study

Our early TVR experiments [4] were based or
JSDA collaboratory server and VRML multi-user front-
ends, linked to the JSDA channels via the EAI or the
Java scripting. The associated computational experi-
ments within the WebFlow model were using Java Web
server middleware and Java applet authoring front-ends.

We are currently building the new version of an
Object Web based collaboratory WebFlow environment
which includes and integrates several enabling technolo-
gies listed above. Our current application domain that
drives the system design and prototyping is given by
the WebHLA based military modeling and simulation
where are are developing the Object Web based RTI
and the WebFlow based visual authoring tools for HLA
simulations. The software bus of our system is given by
JWORB - Java Web Object Request Broker that inte-
grates Java, Web and CORBA middleware technologies.

JWORB is a multi-protocol extensible server writ-
ten in Java. The base server has HTTP and IIOP pro-
tocol support. It can serve documents as an HTTP Web
Server and it handles the IIOP connections as an Ob-
ject Request Broker. As an HTTP server, JWORB sup-
ports Servlet and CGI mechanism. Any servlet devel-
oped with Java Servlet API can run with JWORB.

Since JWORB design is Object Oriented, it is very
easy to add other protocols. As JWORB starts up, it
looks at con�guration �les to �gure out which protocols
it is capable of handling and it loads the necessary pro-
tocol classes for each protocol. If we want to add a new
protocol, we need to implement a few abstract classes
de�ned for the protocol object and to register this proto-
col implementation in the con�guration �le. This mech-
anism allowed us to de�ne HTTP and IIOP protocols
in the current prototype and we are investigating to in-
clude the DCOM Protocol or CORBA-to-DCOM bridge
to be able to communicate with the DCOM objects.

On top of JWORB, we are developing dedicated
services such as CORBA collaboratory.

5.1 Collaboration based on CORBA We include
below the two most signi�cant IDL de�nitions in our
proposed CORBA Collaboration Service. The IDL def-
initions signify the operations a Client could invoke on
a remote instance of these objects. Invocation of any
of these aforementioned operations should be preceeded
by a successful reception of a remote handle to these

objects.

interface Coordinator {

boolean setMaxClients(in long arg0);

long getMaxClients();

long numberOfMembers();

typedef sequence string sequence_of_string;

MultiCoordinator::Coordinator::sequence_of_string

getClientNames();

boolean isEmpty();

long register(in long arg0, in string arg1,

in Client::ClientControl arg2);

boolean deregister(in long arg0);

boolean broadcast(in string arg0);

boolean whisper(in string arg0, in long arg1);

};

interface PartyScheduler {

boolean createParty(in string arg0);

long getPartyID(in string arg0);

MultiCoordinator::Coordinator

getPartyHandle(in long arg0);

};

The PartyScheduler is the one which schedules the
appropriate instance of the Coordinator Object to coor-
dinate Clients logged onto a speci�c session (Party) com-
prising of possible di�erent applications. In the event
that there is a Distributed Directory service and the
Active Object server is in place, the Client is ready to
invoke the IDL-de�ned operations.

� It starts with the createParty(String partyName)
function which would return a true in the event that
a new Coordinator Object has been instantiated or
a false to signify the prior existence of the desired
party.

� The Client gets a handle to the Coordinator Object
by invoking long getPartyID(in string arg0); Mul-
tiCoordinator::Coordinator getPartyHandle(in long
arg0); in succession.

� Once Steps I and II are over and done with, the
Client is now in a Distributed Collaboration mode,
and can invoke operations speci�ed in IDL de�ni-
tions for the Coordinator.

5.2 RMI-Based CollaboratoryThe abstractions pro-
vided by the CORBA Collaboratory are maintained in
the RMI version, except that instead of IDL de�nitions
as the starting point Java Interfaces perform the same
function.

import java.rmi.*;

public interface PartyScheduler extends Remote {

boolean createParty(String PartyName)

4

throws java.rmi.RemoteException;;

int getPartyID(String PartyName)

throws java.rmi.RemoteException;;

MultiCoordinator.Coordinator getPartyHandle(int partyID)

throws java.rmi.RemoteException;;

}

package MultiCoordinator;

import java.rmi.*;

public interface Coordinator extends Remote {

boolean setMaxClients(int _maxClients)

throws java.rmi.RemoteException;

int getMaxClients()throws java.rmi.RemoteException;

int numberOfMembers()

throws java.rmi.RemoteException;

String[] getClientNames()

throws java.rmi.RemoteException;

boolean isEmpty() throws java.rmi.RemoteException;

int register(int clientHashCode, String ClientName,

String clientObjRef)

throws java.rmi.RemoteException;

boolean deregister(int clientID)

throws java.rmi.RemoteException ;

boolean broadcast(String Message)

throws java.rmi.RemoteException;

boolean whisper(String Message, int clientID)

throws java.rmi.RemoteException;

}

The RMI based Collaboration is about 30-40%
faster than the IIOP solution, however the advantage
RMI holds is blunted by the fact that its a pure Java
Solution. RMI-Collab is platform independent, albeit
expressed through Java. Nevertheless, CORBA is a plat-
form independent and language independent solution.
With CORBA one could have Java Helper classes ac-
cessing a C++ implementation of the Party Scheduler.
The choice is clear in case of pure Java solutions write
to RMI else write to CORBA.

5.3. Logical Time and Data Distribution Man-

agement Communication locality is the most impor-
tant concept which allows us to build large scale scal-
able collaborative environments. This essential feature
is enabled via event �ltering in terms of JSDA channels,
CORBA Event Service and RTI routing spaces.

CORBA's Event Service tries to address the Sub-
scribe/Publish pattern for information exchange be-
tween objects. By relying on this technology, it is pos-
sible that each participant keeps its Event Channel as
its broadcasting channel in his/her machine and pub-
lishes its Channel address in the public directory so that
all interested parties can get the address of this Event
Channel and subscribe this channel.

In HLA/RTI[6], DDM[5] allows simulations to
de�ne a routing spaces so that the communication
layer delivers the interaction and attribute updates
to the appropriate simulation unlike broadcasting to
everybody[7] and consuming computation time and net-

work bandwidth[8] de�ned by Distributed Interactive
Simulation(DIS)[9].

Time Management[10] service of RTI is being de-
veloped to provide appropriate time stamps for mes-
sages while allowing a simulation to pick the appropriate
message order (FIFO, Priority Based, Total Order, and
Causal Order). Handling messages in the correct order is
a challenging problem since participants are distributed
and network introduces latency. Because of this delays
participants can receive messages which has happened in
the past but arrived late[11]. The solution for this prob-
lem is to provide a synchronization mechanism between
participants.

One of the approaches is to synchronize every-
body conservatively. Conservative approach spends a lot
of time for synchronization and wastes network band-
width and computation resources. The second alter-
native known as Optimistic approach allows partici-
pants to proceed into the future(for a small time win-
dow); if they receive an event from past then they
rollback. The last synchronized time is de�ned as a
Global Virtual Time[12]. The determination of Global
Virtual Time (GVT) consumes a network tra�c and
time; therefore we wish to calculate GVT as less fre-
quently as possible[13]. To �nd the GVT, the mini-
mum time stamped event(message) has to be determined
while taking care of the events (messages) in transit.
SPEEDES[14] handles this problem by counting the sent
and received events globally in the system. Whenever
it �nds out they are equal, then it starts the process
related to determination of GVT.

5.4 Visual Authoring Tools Front-end of our
WebHLA prototype will include visual authoring tools
for the HLA simulation objects. HLA Simulation
Tools are being designed to provide automated support
for development of HLA Object Models(OM), gener-
ation of RTI federation execution data and exchang-
ing OMs with the Object Model Library. Currently
available tools include Aegis Object Model Development
Tool(OMDT),OSim from OriginalSim Inc

Currently, our e�orts in this area include develop-
ment of a Simulation tool that conforms to the OMDT
look-and-feel and it is included as a module/component
in the WebFlow framework. Also, experiments are being
performed to explore the feasibility of exploiting useful
components like Microsoft Excel'97 spreadsheet through
its COM interfaces for the purpose of tree-like graphical
representation of the simulation object model.

5.5 DirectX meets HLA The DirectX is a common
infrastructure from Microsoft Inc., in the implementa-
tion of high performance real-time applications such as

5

computer games and multimedia applications. The com-
ponent of DirectX that supports multiplayer, networked
applications is called DirectPlay. The functions pro-
vided by DirectPlay are similar to those provided by the
HLA RTI with a few signi�cant di�erences. DirectPlay
provides some features speci�c to gaming. However, it
does not provide any time synchronization features; it is
built to support a DIS-like, loose causality model. Di-
rectPlay also di�ers from the RTI in that it does not
provide any support for determining data routing. In
DirectPlay, there is no concept of a common object or
data de�nition.

DirectPlay is possibly the more suitable technol-
ogy for multiuser PC games. However combining Di-
rectPlay with concepts of DIS and HLA might create a
hybrid technology that could be useful for both military
simulations and the entertainment industry.

We are currently designing the runtime display
support using VRML and DirectX technologies, linked
to the Java middleware via suitable interfaces (EAI,
Java scripting, COM/CORBA bridge). We are also an-
alyzing a set of advanced DoD simulation kernels in-
cluding RTI, SPEEDES and ModSAF and we intend
to experiment with their underlying time management
algorithms within our JWORB framework via suitable
CORBA interfaces. This way, the JWORB middle-
ware acts as a universal software bus linking desk-
top/commodity visualization front-end with the DoD
M&S backend.

6. Summary

We believe that the current
suite of Web/Commodity technologies provides us with
a critical mass su�cient to build the next generation
world-wide scalable televirtual environments. We out-
lined here several enabling technologies that need to be
integrated and we summarized the current status of our
prototyping experiments. At the moment, our Java Web
Server based WebFlow prototype is operational and we
are also testing the early prototype of our new JWORB
middleware. We are also experimenting with and eval-
uating the front-end display (VRML/Java3D/DirectX)
and the back-end persistent store (JDBC/PSS/OLEDB)
technologies as they emerge and evolve. In parallel with
this core technology R&D, we are also exploring a suite
of advanced military simulation environments such as
SPEEDES, ModSAF, HLA/RTI. We expect early inte-
gration demos for multi-user WebHLA authoring and
runtime to be available by summer '98 and to be pre-
sented during this Workshop.

References

[1] Craig Thompson, OMG/DARPA Workshop on Compo-
sitional Software Architectures, Monterey, CA January
6-8 1998,
http://www.objs.com/workshops/ws9801/

[2] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Fur-
manski and G. Premchandran, "WebFlow - a visual pro-
gramming paradigm for Web/Java based coarse grain
distributed computing", February '97, in the special is-
sue of "Concurrency: Practice and Experience" on Java
for Scienti�c Computing.

[3] G. Fox, W. Furmanski and T. Haupt, "ASCI WebFlow:
High-Level Programming Environment and Visual Au-
thoring Toolkit for High Performance Distributed Com-
puting",
http://www.npac.syr.edu/projects/asci-web
ow

[4] D. Dias, G. Fox, W. Furmanski, V. Mehra, B. Natara-
jan, H. T. Ozdemir, S. Pallickara and Z. Ozdemir, "Ex-
ploring JSDA, CORBA and HLA based MuTech's for
Scalable Televirtual (TVR) Environments", presented
at VRML98, February '98, Monterey CA.

[5] Danny Cohen and Andreas Kemkes, Using DDM - an
Application Perspective, 1997 Spring Simulation Inter-
operability Workshop (SIW), 97S-SIW-014

[6] High Level Architecture (HLA) by the Defence Mod-
elling and Simulation O�ce (DMSO), at
http://www.dmso.mil/hla/

[7] Katherine L. Morse, Interest Management in Large-
Scale Distributed Simulations , UC Irvine, Information
and Computer Science Technical Report, ICS-TR-96-27

[8] Duncan C. Miller, The DOD High Level Architecture
and The Next Generation of DIS , March 1996, 14th
DIS Wokshop, 96-14-115

[9] IEEE Standard for Distributed Interactive Simulation -
Application Protocols, IEEE 1278.1-1995

[10] HLA Time Management Design Document, August 16,
1996, at
http://www.dmso.mil/hla/tech/ifspec/

[11] L. Lamport, Time, Clocks, and the Ordering of Events
in a Distributed System, Communications of the ACM,
21(3), pp:558-565, July 1978

[12] D.R. Je�erson, Virtual Time, ACM Transactions on
Programming Languages and Systems, 7(3), pp:404-
425, July 1985

[13] J. Steinman, C.A. Lee, L.F. Wilson and D.M. Nicol,
Global Virtual Time and Distributed Synchronization,

[14] J. Steinman, 1991, SPEEDES: Synchronous Parallel En-
vironment for Emulation and Discrete-Event Simula-
tion, In the proceedings of the SCS Western Multicon-
ference on Advances in Parallel and Distributed Simu-
lation(PADS91), Vol. 23, No. 1, pp:95-103

6

